Tag Archive for: Hybrid Cloud

Cyber Insurance Isn’t Enough Anymore

The cyber insurance world has changed dramatically.

Premiums have risen significantly, and insurers are placing more limits on covered items. Industries like healthcare, retail, and government, where exposure is high, have been hit hard. Many organizations have seen huge rate increases for substantially less coverage than in the past. Others have seen their policies canceled or been unable to renew.

In many cases, insurers are offering half the coverage amounts at a higher cost. For example, some insurers that had previously issued $5 million liability policies have now reduced amounts to $1 million to $3 million while raising rates. Even with reduced coverage, some policy rates have risen by as much as 300%.

At the same time, insurers are leaving the field. Big payoffs in small risk pools can devastate profitability for insurers. Many insurers are reaching the break-even point where a single covered loss can wipe out years of profits. In fact, several major insurance companies have stopped issuing new cybersecurity insurance policies altogether.

This is in part to incidents like the recent Merck legal victory forcing a $1.4B payout due to the NotPetya’s malware attack. According to Fitch Ratings, more than 8,100 cyber insurance claims were paid out in 2021, the third straight year that claims increased by at least 100%. Payments from claims jumped 200% annually in 2019, 2020, and 2021 as well.

Claims are also being denied at higher rates. With such large amounts at stake, insurers are looking more closely at an organization’s policies and requiring proof that the organization is taking the right steps to protect itself. Companies need to be thinking about better ways to manage more of the cyber risks themselves. Cyber insurance isn’t enough anymore.

Dealing with Ransomware

At the heart of all of this drama is ransomware. The State of Ransomware 2022 report from Sophos includes some sobering statistics.

Ransomware attacks nearly doubled in 2021 vs. 2020, and ransom payments are higher as cybercriminals are demanding more money. In 2020, only 4% of organizations paid more than $1 million in ransoms. In 2021, that number jumped to 11%. The average ransomware paid by organizations in significant ransomware attacks grew by 500% last year to $812,360.

More companies are paying the ransom as well. Nearly half (46%) of companies hit by ransomware chose to pay despite FBI warnings not to do so. The FBI says paying ransoms encourages threat actors to target even more victims.

Even with cyber insurance, it can take months to fully recover from a ransomware attack and cause significant damage to a company’s reputation. Eighty-six percent (86%) of companies in the Sophos study said they lost business and revenue because of an attack. While 98% of cyber insurance claims were paid out, only four out of ten companies saw all of their costs paid.

There’s some evidence that cybercriminals are actively targeting organizations that have cyber insurance specifically because companies are more likely to pay. This has led to higher ransom demands, contributing to the cyber insurance crisis. At the same time, there’s been a significant increase in how cybercriminals are exacting payments.

Ransomware attackers are now often requiring two payments. The first is for providing the decryption key to unlock encrypted data. A demand for a separate payment is made to avoid releasing the data itself publicly. Threat actors are also hitting the same organizations more than once. When they know they’ll get paid, they often increase efforts to attack a company a second or third time until they lock down their security.

Protecting Yourself from Ransomware Attacks

Organizations must deploy strict guidelines and protocols for security and follow them to protect themselves. Even one small slip-up in following procedures can result in millions or even billions of dollars in losses and denied claims.

People, Processes, Tech, and Monitoring

The root cause of most breaches and ransomware attacks is a breakdown in processes, allowing an attack vector to be exploited. This breakdown often occurs because there is a lack of controls or adherence to these controls by the people using the network.

Whether organizations decide to pay the price for cyber insurance or not, they need to take proactive steps to ensure they have the right policies in place, have robust processes for managing control, and train their team members on how to protect organizational assets.

Organizations also need a skilled cybersecurity workforce to deploy and maintain protection along with the right tech tools.

Even with all of this in place, strong cybersecurity demands continuous monitoring and testing. Networks are rarely stable. New devices and endpoints are added constantly. New software, cloud services, and third-party solutions are deployed. With such fluidity, it’s important to continually identify potential security gaps and take proactive measures to harden your systems.

Identifying Potential Vulnerabilities

One of the first steps is understanding your entire network environment and potential vulnerabilities. For example, RedSeal’s cloud cybersecurity solution can create a real-time visualization of your network and continuously monitor your production environment and traffic. This provides a clear understanding of how data flows through your network to create a cyber risk model.

Users get a Digital Resilience Score which can be used to demonstrate their network’s security posture to cyber insurance providers.

This also helps organizations identify risk factors and compromised devices. Also, RedSeal provides a way to trace access throughout an entire network showing where an attacker can go once inside a network. This helps identify places where better segmentation is required to prevent unauthorized lateral movement.

In case an attack occurs, RedSeal accelerates incident responses by providing a more complete road map for containment.

Cyber Insurance Is Not Enough to Protect Your Bottom Line

With escalating activity and larger demands, cyber insurance is only likely to get more expensive and harder to get. Companies will also have to offer more proof about their security practices to be successful in filing claims or risk having claims denied.

For more information about how we can help you protect your network and mitigate the risks of successful cyber-attacks, contact RedSeal today.

The Unique Security Solution RedSeal Brings to Multi-Cloud and Hybrid Network Environments

One of the most significant benefits of implementing a multi-cloud strategy is the flexibility to use the right set of services to optimize opportunities and costs.

As public cloud service providers (CSPs) have evolved, they have started to excel in different areas. For example, programmers often prefer to use Azure because of its built-in development tools. However, they often want their apps to run in AWS to leverage the elastic cloud compute capability.

Adopting a multi-cloud strategy enables enterprises to benefit from this differentiation between providers and implement a “best of breed” model for the services that need to consume. They can also realize significant efficiencies, including cost-efficiency, by managing their cloud resources properly.

But multi-cloud solutions also bring their own challenges from administration to security. This can be especially challenging for organizations that don’t have deep experience and knowledge across all platforms and how they interconnect. It can sometimes seem like speaking a different language. For example, AWS has a term called VPC (virtual private cloud). Google Cloud Platform (GCP) uses that term, too but it means something different. In other cases, the reverse is true. The terminology is different but they do the same things.

Cloud provider solutions don’t always address the needs of hybrid multi-cloud deployments. Besides the terminology of AWS, Azure, GCP, Oracle’s OCI, IBM’s cloud, and others have different user interfaces. In a multi-cloud environment or hybrid environment, it can be far more difficult to secure than a single cloud.

Because of these challenges the need for a platform-independent solution that can understand all of the languages of each platform is needed to translate how your multi-cloud solutions are configured, interconnected, and help mitigate the risks.

How RedSeal Manages Multi-Cloud and Hybrid Cloud

At RedSeal, we provide the lingua franca (or bridge) for multi-cloud and on-premise networks. Security operations center (SOC) teams and DevOps get visibility into their entire network across vendors. RedSeal provides the roadmap for how the network looks and interconnects, so they can secure their entire IT infrastructure without having to be experts on every platform.

In most organizations using multi-cloud and hybrid cloud, however, network engineers and SOC teams are being asked to learn every cloud and on-prem resource and make sure they are all configured properly and secured. Many will deploy virtual cloud instances and use virtual firewalls, but as complexity rises, this becomes increasingly difficult to manage.

RedSeal is the only company that can monitor your connectivity across all of your platforms whether they are on-prem or in the cloud. This allows you to see network topology across all of your resources in one centralized platform.

Proactive Security

Proactive security is also complex. Most security offerings monitor in real-time to alert you when there’s an attack underway. That’s an important aspect of your security, but it also has a fundamental flaw. Once you recognize the problem, it’s already underway. It’s like calling 9-1-1 when you discover an emergency. Help is on the way, but the situation has already occurred.

Wouldn’t you like to know your security issues before an incident occurs?

RedSeal helps you identify potential security gaps in your network, so you can address them proactively. And, we can do it across your entire network.

Network Segmentation

Segmenting your network allows you to employ zero trust and application layer identity management to prevent lateral movement within your network. One of the most powerful things about RedSeal is that it provides the visibility you need to manage network segmentation.

It’s a simple concept, but it can also become incredibly complex — especially for larger companies.

If you’re a small business with 100 employees, segmentation may be easy. For example, you segment your CNC machine so employees don’t have admin rights to change configurations. In a mid-size or enterprise-level company, however, you can have an exponential number of connections and end-points. We’ve seen organizations with more than a million endpoints and connections that admins never even knew existed.

It’s only gotten more complex with distributed workforces, remote workers, hybrid work environments, and more third-party providers.

RedSeal can map it all and help you provide micro-segmentation for both east-west and north-south traffic.

Vulnerability Prioritization

Another area where RedSeal excels is by adding context to network vulnerability management. This allows you to perform true risk-based assessments and prioritization from your scanners. RedSeal calculates vulnerability risk scores that account for not only severity and asset value but also downstream risk based on the accessibility of vulnerable downstream assets.

In many cases, RedSeal uncovers downstream assets that organizations didn’t know were connected or vulnerable. These connections provided open threat surfaces, but never showed up in alert logs or only as low-to-medium risks. So, SOC teams already overwhelmed with managing critical and high-risk alerts may never get to these hidden connections. Yet, the potential damage from threat actors exploiting these connections could be even greater than what showed up as high risk.

RedSeal shows you the complete pictures and helps you prioritize vulnerabilities so you can focus on the highest risks in your unique environment.

Play at Your Best

In the late ’90s, world chess champion Garry Kasparov faced off against Deep Blue, an IBM supercomputer, in a six-game exhibition. Kasparov won the first match. Deep Blue won the second and the next three ended in draws. When Deep Blue won the final match and secured the overall victory, Kasparov was asked to concede that the best chess player in the world is now a computer.

Kasparov responded by saying that people were asking the wrong question. The question isn’t about whether the computer is better, but rather how do you play the best game of chess? Kasparov believes he lost not because the computer was better, but because he failed to perform at his best and see all of the gaps in his play.

You can’t afford to make mistakes in your security and beat yourself. By understanding your entire network infrastructure and identifying security gaps, you can take proactive measures to perform at your best.

RedSeal is the best move for a secure environment.

Learn more about how we can help protect your multi-cloud and hybrid cloud environments. Contact RedSeal today.

Ransomware Realities: Exploring the Risks to Hybrid Cloud Solutions

Hybrid cloud frameworks offer a way for companies to combine the scalability of public clouds with the security and control of their private counterparts. Pandemic pressures have accelerated hybrid adoption. According to recent survey data, 61 percent of companies currently use or pilot hybrid clouds, while 33 percent have plans to implement hybrid options in the next two years. Meanwhile, research firm Gartner points to growing cloud ubiquity across enterprise environments driven by hybrid, multi-cloud, and edge environments.

Along with increased uptake, however, is a commensurate uptick in ransomware risks. With attackers leveraging the distributed nature of remote work environments to expand their attack impact, organizations must recognize potential challenges and develop frameworks to mitigate ransomware threats effectively.

What Are the Ransomware Risks of a Hybrid Cloud Environment?

Because hybrid clouds rely on a combination of public and private solutions, overall ransomware risks are effectively double.

Consider the recent ransomware attack on payroll provider Kronos. As noted by CPO Magazine, after details of the Java diagnostic tool Log4JShell vulnerabilities were made public on December 9th, hundreds of thousands of ransomware attacks were launched worldwide. One likely victim was Kronos, with the company’s private cloud forced offline after a ransomware attack leading to weeks of remediation. Private clouds are also under threat as attacks shift from outside to inside — even a single disgruntled employee with administrative access could wreak havoc on internal clouds by simply ignoring email protection warnings or clicking through on malicious links.

Public cloud providers, including Amazon Web Services (AWS), Google Cloud, and Azure, have begun publishing articles and offering resources to help mitigate the impact of ransomware in the cloud. While large-scale public cloud services have yet reported no major ransomware attacks, it’s a matter of when, not if, these attacks occur.

In practice, successful attacks on public or private clouds can lead to severe consequences.

Systems Downtime

Ransomware attackers encrypt key files and demand payment for release. As a result, the first line of defense against increasing attack impact is shutting down affected systems to focus on remediation. Cybercriminals may also pair ransomware efforts with dedicated denial of service (DDoS) attacks which force systems offline by overloading them with traffic volumes and resource requests, even as ransomware is deployed behind network lines.

Depending on the scale and severity of the attack, it could take days or weeks for IT teams to discover the full extent of the damage, remediate the issue and bring systems back online.

Monetary Loss

As noted by Dark Reading, the average ransomware payout hit $570,000 in the first quarter of 2021, more than $250,000 more than the 2020 average of $312,000.

But initial payouts are just the start of the problem. Even if attackers return control of critical files, companies must still spend time and money identifying the vulnerabilities that made ransomware attacks possible in the first place. Then, they must spend even more money remediating these issues and testing their new security frameworks.

There’s also the potential risk of costly data loss if enterprises choose not to pay and instead look to decrypt data using available security tools — or if they pay up and attackers aren’t true to their word. If security solutions aren’t able to remove ransomware before the deadline or criminals can’t (or won’t) decrypt data, companies are left with the daunting and expensive task of building data stores back up from scratch.

Reputation Damage

Eighty-eight percent of customers won’t do business with a brand they don’t trust to handle their data. Ransomware is a red flag when it comes to trust. Even if such attacks are inevitable, customers want to know that companies took every possible precaution to prevent data loss and need the confidence that comes with clear communication about the next steps.

As a result, the loss of data due to ransomware or the inability to articulate how information recovery will occur and how data will be better defended going forward can damage organizations. After a ransomware attack, businesses often face negative impacts on reputation, reduced customer confidence, and revenue losses.

Legal Challenges

Evolving regulations such as the General Data Protection Regulation (GDPR), California Consumer Privacy Act (CCPA), Payment Card Industry Data Security Standard (PCI DSS), and the Health Insurance Portability and Accountability Act (HIPAA) all include provisions around the safe collection, storage, and use of data. Failure to comply with these regulations can lead to fines and legal challenges if ransomware attacks are successful.

Hybrid Cloud Security Measures

While it’s not possible to eliminate ransomware in hybrid cloud environments, there are steps you can take to reduce overall risk.

1. Deploying Offline Backups

If ransomware attacks are successful, malicious code can encrypt any connected devices. These include physically attached devices such as universal serial bus (USB) sticks or hard drives along with any online, cloud-connected drives across both public and private clouds.

To help mitigate this risk, it’s worth deploying secure offline backups that are not connected to internal hosts or external data sources once backup processes are complete. Consider a private cloud backup. To reduce ransomware impact, companies are best served by establishing a data backup schedule that includes provisions for device connection, data transfer, and device disconnection once the backup is complete. By utilizing multiple offline devices that are regularly backed up and then disconnected, businesses can ensure that data remains available even if primary systems are compromised by ransomware.

2. Implementing Two-Factor Authentication

Frustrating attacker efforts to gain network access can significantly reduce the risk of ransomware. Best bet? Start with two-factor authentication (2FA). While it remains relatively easy for attackers to compromise passwords using both social engineering and brute-force attacks, implementing 2FA solutions that leverage one-time text codes or biometric data can help protect networks even if account credentials are breached. What’s more, failed 2FA checks that accompany correct account information can signal to information technology (IT) teams that attack efforts may be underway, in turn allowing them to respond and remediate threats proactively.

Even more protection is available through multi-factor authentication (MFA) strategies that combine text codes and biometrics to frustrate attackers further. It’s also vital to create strong password policies that mandate regular password changes and include rules around required password length and the use of special characters or symbols to increase overall protection. While passwords remain one of the least secure forms of data defense, they’re not going anywhere. As a result, companies must address common password problems before they lead to compromise.

3. Disabling Well-Known Ports

While attackers are constantly developing new methods and leveraging newly-discovered vulnerabilities to distribute ransomware code, they’re also creatures of habit. If specific attack vectors continue to see success, they won’t abandon them simply because something new comes along.

Case in point: Ports connected to cloud services, such as ports 137-139, 445, and 3389, are common attack targets. By disabling these ports, businesses can remove some of the most-used ransomware distribution pathways, in turn forcing attackers to take more circuitous routes if they want to compromise and infect public and private cloud systems.

4. Turning off RDP

The remote desktop protocol (RDP) allows users to connect with another computer over a network connection and provides a graphical user interface to help streamline this process. The problem? Attackers can exploit insecure RDP deployments — which typically use transmission control protocol (TCP) port 3389 and UDP port 3389 — to access user desktops and, in turn, move laterally through corporate systems until they find and encrypt critical files.

While it’s possible to protect RDP with increased security measures, the collaborative nature of cloud deployments often makes it simpler to disable RDP up-front to reduce total risk.

5. Updating to SMB 3.1.1

The Server Message Block (SMB) provides a way for client applications to read and write to files and request server resources. Originally introduced for the disk operating system (DOS) as SMB 1.0, SMB has undergone multiple iterations, with the most current version being 3.1.1. To help protect cloud services from potential ransomware attacks, businesses must upgrade to version 3.1.1 and ensure that version 1.0 is fully disabled. Failure to do so could allow hackers to reactivate version 1.0 and leverage the WannaCry vulnerability to compromise systems and install ransomware.

6. Ensuring Encryption is Used for All Sessions

Encryption helps reduce the risk of compromise by making it harder for attackers to discover and exploit critical resources. Ideally, companies should use transport layer security (TLS) v1.3 for maximum protection. Much like SMB, it’s also important to disable TLS 1.0. Why? Because if TLS v1.0 is enabled, attackers could force your server to negotiate down to TLS v1.0, which could, in turn, allow an attack.

It’s also a good idea to boost encryption efficacy by using SSHv2.0 and disabling Telnet port 80 to frustrate common attacker pathways.

7. Prohibiting Macro-Enabled Spreadsheets

Macro-enabled Excel spreadsheets have long been a source of ransomware and other malicious code. If attackers can convince users to download and open these spreadsheets, criminals are then able to install malware droppers that in turn connect with command and control (C&C) servers to download ransomware.

Recent efforts see attackers sending emails to unsuspecting users indicating they’ve been the victims of credit card fraud. Customers call in, are directed to access a malicious website, and then download a macro-enabled spreadsheet that creates a ransomware backdoor on their device. To reduce the risk of ransomware, it’s a good idea to disable the use of macro-enabled spreadsheets across both in-house Microsoft Office and Office 365 deployments.

8. Increasing Total Visibility

Attackers rely on misdirection and obfuscation to install ransomware and encrypt key files. As a result, visibility is critical for security teams. The more they can see, the better they can pinpoint potential weaknesses and identify vulnerabilities.

The challenge? Increasing hybrid cloud adoption naturally leads to reduced visibility. With companies now using multiple private and public clouds to streamline operations, the sheer number of overlapping services and solutions in use makes it difficult to manage and monitor hybrid clouds at scale. To help address this issue, businesses need cloud security tools capable of delivering comprehensive and dynamic visualization that continually interprets access controls across cloud-native and third-party firewalls to help continuously validate security compliance.

9. Recognizing the Role of Due Diligence

No matter where your data is stored, you’re ultimately responsible for its protection. This is true regardless of the service you use. While your cloud provider may offer load balancing, availability, or storage services that help protect your data, due diligence around hybrid cloud security rests with data owners.

This means that if your provider suffers a breach, you bear responsibility if key security processes weren’t followed. As a result, it’s critical to vet any cloud security services provider before signing a service level agreement (SLA) and ensure robust internal backups exist if cloud providers are compromised, or last-mile connection failures interrupt cloud access.

Controlling Ransomware Risks in Your Hybrid Cloud

Unfortunately, it’s not possible to eliminate ransomware in hybrid clouds. Instead, effective cybersecurity in the cloud needs to focus on controlling the risk that comes with distributed data environments.

This starts with the basics, such as ensuring robust encryption, turning off commonly-used ports, and updating SMB and TLS software. It also requires the use of 2FA and MFA solutions coupled with staff education to ensure they recognize the impact of insecure passwords and practices — such as downloading compromised Excel spreadsheets — cloud security as a whole.

Finally, companies must recognize that ultimate responsibility for secure handling, storage, and use of data rests with them — and that the right cloud security services provider can make all the difference when it comes to reducing risk and enhancing defense in the hybrid cloud.

Want more info on ransomware? Check out this white paper on digital resilience and ransomware protection strategies.

How Security Vulnerabilities Expose Thousands of Cloud Users to Attacks

Cloud computing has revolutionized data storage and access. It’s led the charge for digital transformation and allowed the increased adoption of remote work. At the same time, however, cloud computing has also increased security risks.

As networks have grown and cloud resources have become more entrenched in workflow, cloud computing has created larger potential attack surfaces. To safeguard their mission-critical data and operations, organizations need to know chief cloud cyber risks and have to combat them.

Why Cloud Users Are at Risk

Cloud platforms are multi-tenant environments. They share infrastructure and resources across thousands of customers. While a cloud provider acts to safeguard its infrastructure, that doesn’t address every cloud user’s security needs.

Cybersecurity in the cloud requires a more robust solution to prevent exposure. Instead of assuming that service providers will protect their data, customers must carefully define security controls for workloads and resources. Even if you’re working with the largest cloud service providers, new security vulnerabilities emerge every day.

For example, Microsoft says it invests about $1 billion in cybersecurity annually, but vulnerabilities still surface. Case in point: The technology giant warned thousand of cloud customers that threat actors might be able to read, change, or delete their main databases. Intruders could uncover database access keys and use them to grab administrative privileges. While fixing the problem, Microsoft also admitted it could not change the database access keys, and the fix required customers to create new ones. The burden was on customers to take action, and those that didn’t were vulnerable to cyberattacks.

What Type of Vulnerabilities Affect Cloud Customers?

Despite the security protections cloud providers employ, cloud customers must use best practices to manage their cyberattack protection.

Without a solid security plan, multiple vulnerabilities can exist, including:

1. Misconfigurations

Misconfigurations continue to be one of the biggest threats for cloud users. A few examples:

  • A breach at Prestige Software due to a misconfiguration using Amazon S3 services caused widespread data compromise. This single event exposed a decade’s worth of customer data from popular travel sites, such as Expedia, Hotels.com, and Booking.com.
  • A misconfigured firewall at Capital One put the personal data of 100 million customers at risk.

2. Access Control

Poor access control allows intruders to bypass weak authentication methods. Once inside the network, many organizations do not adequately restrict lateral movement or access to resources. For example, security vulnerabilities in Amazon Web Services (AWS) put up to 90% of S3 buckets at risk for identity compromise and ransomware. The problem? Businesses failed to remove permissions that allowed users to escalate privileges to admin status.

3. Insecure APIs

APIs require access to business data but can also provide vectors for threat actors. Organizations may have hundreds or even thousands of public APIs tied to microservices, leading to a large attack surface. Insecure APIs are cited as the cause of the infamous Equifax breach, which exposed nearly 150 million consumers’ records, along with security lapses at Geico, Facebook, Peloton, and Experian.

4. Lack of Shared Responsibility

Cloud providers manage the security of the cloud, but customers are responsible for handling the security of the data stored in the cloud. Yet, many users fail to keep up their end of this shared responsibility. According to Gartner, 99% of cloud security failures are due to customer errors.

5. Vendors or Third-Party Software

Third-party cloud components mean your networks are only as secure as your vendor’s security protocols. If they are compromised, it may provide a pathway for attackers into your network.

More than half of businesses have seen a data breach caused by a third party. That’s what happened to Audi, Volkswagen, and dozens of others. The infamous REvil ransomware group exploited a vulnerability in Kaseya, a remote monitoring platform, and used it to attack managed service providers (MSPs) to gain access to thousands of customers.

How Can Cloud Users Protect Themselves?

With the acceleration of remote workers and hybrid cloud and multicloud environments, attack surfaces have increased greatly over the past few years. At the same time, hackers have become more sophisticated in their methods.

Since most security tools only work in one environment, it can create a complex web that becomes difficult to manage.

Figuring out how to prevent cyberattacks requires a multi-pronged approach, but it starts with understanding how all of your security tools work together across on-prem, public clouds, and private clouds. You need strategies to monitor all of your networks, including ways to:

  • Interpret access controls across both cloud-native and third-party firewalls (service chaining)
  • Continuously validate and ensure security compliance
  • Manage network segmentation policies and regulations

Security teams must be able to answer these concerns:

  • What resources do we have across our cloud and on-premises environments?
  • What access is possible?
  • Are resources exposed to the public internet?
  • Do our cloud deployments meet best practices for cybersecurity?
  • Do we validate cloud network segmentation policies?

Without a comprehensive cybersecurity solution that evaluates and identifies potential risks, it will be challenging to mitigate vulnerabilities and identify the downstream impacts from security lapses. Even if you believe you have every security measure you need in place across all of your cloud resources, you need a way to visualize resources, identify potential risks, and prioritize threat mitigation.

A Comprehensive Cloud Security Posture Management Solution

Solving a problem starts with identifying it. You need a way to visualize potential vulnerabilities across your networks and cloud resources.

A Cloud Security Posture Management (CSPM) solution will identify vulnerabilities, such as misconfigurations, unprotected APIs, inadequate access controls, and flag changes to security policies. This helps you better understand exposure risks, create more robust cloud segmentation policies, and evaluate all of your cloud vulnerabilities.

Many CSPM solutions, however, only present their finding in static, tabular forms. It can be challenging to understand relationships and gain full awareness of the interconnectivity between cloud resources. Beyond just monitoring traffic, security teams also need to see how instances get to the cloud, what security points it goes through, and which ports and protocols apply.

RedSeal Classic identifies what’s on your network environments and how it’s all connected. This helps you validate security policies and prioritize potential vulnerabilities. RedSeal Classic can evaluate AWS, Azure, Google Cloud, and Oracle Cloud environments along with Layers 2, 3, 4, and 7 in your physical networks for application-based policies and endpoint information from multiple sources.

RedSeal Stratus allows users to visualize their AWS cloud and Elastic Kubernetes Service (EKS) inventory. We’re currently offering an Early Adopters program for RedSeals Stratus, our SaaS-based CSPM, including concierge onboarding service, so you can see the benefits first-hand.

To learn more about how RedSeal can help you see how your environment is connected and what’s at risk, request a demo today.

Future-Proofing Your Security Infrastructure

Cybersecurity is getting more complicated every day. Why is this happening? Organizations are seeing their infrastructure becoming more complex, attack surfaces growing dramatically, and threats from cybercriminals evolving. What’s more, the reliance on public cloud, private cloud, hybrid cloud, and multi-cloud environments — coupled with more remote workers — has expanded the security perimeter for many organizations.

Even before COVID burst onto the scene, cybercrime was on the rise. Instead of a lone hacker sitting in a dark basement, contemporary cyber threat actors are part of organized crime rings.

All these trends underscore the importance of future-proofing your security infrastructure to combat major security threats and protect your mission-critical data.

Cyberattacks Are on the Rise: Data Tells the Tale

From Solar Winds to the Colonial Pipeline attack, cybercriminals have been making headlines in recent years. In addition, statistics reveal that cyberattacks are an ever-growing problem:

Attacks are more prevalent, and they are getting more expensive. The average cost of a data breach now exceeds $4.2 million per incident and can cause recurring problems for years. On average, more than $2.9 million is lost to cybercrime every minute.

Despite increased spending on cybersecurity and best efforts by chief information security officers (CISOs) and information technology (IT) teams, nearly 80% of senior IT leaders believe their organizations lack sufficient protection against cyber-attacks. With the rising threat, every organization needs a strategy to future-proof its infrastructure.

What is Future-Proofing?

Future-proofing your cyber security creates a robust foundation that can evolve as your organization grows and new cyber threats emerge. This includes continually assessing your infrastructure for security gaps, proactively identifying threats, and remediating potential weaknesses.

Future-proof planning encompasses the totality of your security efforts. Failure to plan puts your entire organization at risk. You simply cannot afford to be left unprotected against current and future threats.

What Can (and Can’t) Be Future-Proofed within Your Technology Infrastructure?

What makes future-proofing technology challenging is that we don’t know exactly what the IT landscape will look like in the future. A few years ago, who knew we would see the explosion in the number of remote employees  — often working on unprotected home networks.

The good news is that the cloud has given us tremendous flexibility and helps us future-proof without overspending right now on capacity we may or may not need. With nearly infinite scalability, cloud applications have allowed organizations to adapt and grow as necessary. However, it’s also put more sensitive and proprietary data online than ever before and made IT infrastructure more complex.

To future-proof your infrastructure, you need an approach for visualizing, monitoring, and managing security risks across every platform and connection. This lets you expand your security perimeter as your network grows and proactively identify new exposure as you evolve.

How Can Organizations Prepare for the Future?

Security needs to be part of every company’s DNA. Before you make any business decisions, you should run through security filters to ensure the right safeguards are in place. It takes a security culture that goes beyond the IT departments to future-proof your organization.

With data in the cloud, there’s a shared security responsibility. For example, public cloud providers take responsibility for their cloud security, but they are not responsible for your apps, servers, or data security. Too many companies are still relying on cloud providers to protect assets and abdicating their part of the shared security model.

Between multi-cloud, hybrid cloud environments, and a mix of cloud and on-prem applications, it’s become increasingly difficult to track and manage security across every platform. Many security tools only work in one of these environments, so piecing together solutions is also challenging.

For example, do you know the answers to these questions:

  • What resources do we have across all our public cloud and on-premises environments?
  • Are any of these resources unintentionally exposed to the internet?
  • What access is possible within and between cloud and on-premises environments?
  • Do our cloud deployments meet security best practices?
  • How do we validate our cloud network segmentation policies?
  • Are we remediating the riskiest vulnerabilities in the cloud first?

An in-depth visualization of the topology and hierarchy of your infrastructure can uncover vulnerabilities, identify exposure, and provide targeted remediation strategies.

You also need a cloud security solution to identify every resource connected to the internet. Whether you’re using AWS, Microsoft Azure, Google Cloud, Oracle Cloud, or other public cloud resources along with private cloud and on-prem resources, you need a holistic view of security.

Traditional security information and event management (SEIM) systems often produce a large volume of data, making it unwieldy to identify and isolate the highest priority concerns. You need a network model across all resources to accelerate network incident response and quickly locate any compromised device on the network.

Another necessity is continuous penetration tests to measure your state of readiness and re-evaluate your security posture. This helps future-proof your security as you add resources and new threats emerge.

Create a Secure Future for Your Organization

Creating a secure future for your organization is essential. As IT infrastructure and connectivity become more complex, attack surfaces continue to grow, and cybercriminals evolve their tactics, the risks are too great for your company, customers, and career not to build a secure foundation. You need to do more than plan your response to an incident and must know how to prevent cyberattacks with proactive security measures.

Secure all your network environments — public clouds, private clouds, and on-premises — in one comprehensive, dynamic visualization. That’s Red Seal.

RedSeal — through its cloud security solution and professional services — helps government agencies and Global 2000 companies measurably reduce their cyber risk by showing them what’s in all their network environments and where resources are exposed to the internet. RedSeal verifies that networks align with security best practices, validates network segmentation policies, and continuously monitors compliance with policies and regulations.

Contact Red Seal today to take a test drive.

Five Steps to Improve your Multi-Cloud Security

In 2021, the COVID-19 pandemic had a dramatic impact on how and where we do business. For many enterprises, the “where” became the cloud – immediately. This rapid adoption of the cloud – in most cases multiple clouds – created a rapid increase in security issues. Suddenly, enterprises had new cloud security requirements they needed to understand and deploy without the benefit of time to learn. The complexity continued to increase, and this triggered new security issues with potentially costly consequences. These included:

  • Data leakage/exfiltration – Unauthorized movement of sensitive data from inside the enterprise to outside can be accidental or deliberate. Often the discovery that data has been leaked occurs days, weeks, or months later, and can result in a damaged brand, lost customer trust, and fines.
  • Ransomware – Enterprises can pay thousands to millions of dollars to access encrypted data and systems in order to restore operations. Additionally they can be extorted to pay for the recovery of stolen sensitive information.  If they refuse to pay,  enterprises can lose days or weeks of revenue trying to recover their systems, and risk having sensitive data posted on the internet.
  • Non-compliance – Enterprises not adhering to mandatory regulations (PCI-DSS, CMMC, HIPAA) or voluntary cybersecurity frameworks (NIST, GDPR) can incur costly penalties and potential shutdowns that limit their ability to conduct business. Customer relationships may be damaged by the perception that security isn’t a priority.
  • Team collaboration/staffing shortages – DevOps is highly distributed across the enterprise and many teams acknowledge the lack of cloud platform security expertise. Cloud security practices should encourage significant collaboration that leverages both internal and external expertise.

To maintain cloud security and reduce–if not totally eliminate–the impact of these serious security issues, enterprises need a proven cybersecurity framework to address these issue directly.

Steps to strengthen your cloud security

Cloud environments are dynamic and constantly evolving. These 5 steps provide a proven framework to improve your enterprise’s cloud security using a technology driven approach, even in a multi-cloud environment.

  1. Visualize/maintain an accurate inventory of compute, storage and network functions
    Security teams often lack visibility across multi-cloud and hybrid environments. Cloud environments are often managed in disparate consoles in tabular forms. Security teams need to understand controls that filter traffic, including cloud native controls (network security groups and NACLs), and third-party infrastructure (SASE, SD-WAN and third-party firewalls). A single solution that provides a detailed visual representation of the multi-cloud environment is critical.
  2. Continuously monitor for exposed resources
    It is important to understand which cloud resources are publicly accessible or Internet-facing. Unintentional exposure of resources to the Internet is a major cause of cloud breaches. This includes any data resources like AWS S3 buckets or AWS EC2 instances. Security teams need to easily identify and report on exposed resources, and then provide remediation options that include changes to security groups or firewall policy.
  3. Continuously validate against industry best practices
    There are many industry best practice frameworks that can be used to validate cloud security. CIS Benchmarks and Cloud Security Alliance are two of these frameworks. Security teams should continuously validate adherence to best practices and quickly remediate findings to eliminate misconfigurations and avoid excessive permissions.
  4. Validate policies – segmentation within/across clouds and corporate mandates
    Many security teams create segmentation policies to minimize attack service and reduce the risk of lateral movement. Examples may be segmenting one Cloud Service Provider from another (AWS cannot talk to Azure) or segmenting access across accounts in the same CSP. Both segmentation and corporate policies should be continuously monitored for violations and provide detailed information that enables rapid remediation.
  5. Conduct comprehensive vulnerability prioritization
    All vulnerability management solutions provide a severity score, but more comprehensive prioritization can occur by identifying which vulnerabilities in the cloud are Internet-facing (including the downstream impact of these vulnerabilities).

Implementing success

While the risks grew for many enterprises this past year as they rapidly moved to the cloud, several have dodged the bullet. RedSeal has helped many successfully adopt a strong security framework and gained actionable insights into their cloud environments. These insights were often an eye-opener.

  • Underestimated VPC[1] inventory in the cloud – A healthcare customer expected “a few VPCs” in their cloud environment. The implementation of RedSeal revealed they had over 200 VPCs. This helped them see their overall cloud footprint and reduced their attack surface.
  • Exposed cloud resources– An enterprise customer incorrectly believed that all of their cloud resources were protected by a third-party firewall. Consequently, many resources were directly exposed to the Internet. RedSeal identified the exposed resources and the misconfigurations before any exploitation occurred.
  • Risky shadow IT – A technology company’s business unit had cloud instances that did not pass the company’s access security mandate. RedSeal identified these resources and helped determine that employees had bypassed process and created unauthorized cloud resources. The company’s shadow IT with respect to cloud security is now under control.
  • Zone-based segmentation as required by PCI-DSS – A payment card provider validated that card holder data was segregated and protected after their cloud migration. They modeled and monitored their segmentation policy, enabling their audit to be completed quickly and confidently.
  • VPC/VNET without subnets or subnets without instances – A healthcare customer discovered 100s of empty VPC/VNET subnets and subnets without instances in their cloud environment. The default configuration: “ANY/ANY” could have been easily exploited by malicious actors and industry best practices indicate they should be deleted or actively monitored.

 

With RedSeal, all these enterprises, and more, have utilized a multi-cloud security methodology that highlights: Visualization/Inventory, Exposure, Industry Best Practices, Policy Validation, and Vulnerability Prioritization. These 5 steps can bring peace of mind to security teams who have had to act quickly and without warning in response to this most unprecedented year.

Learn More

Looking for more details on how 3rd party firewalls may impact your cloud security framework? Download our whitepaper “How Should I Secure My Cloud?

RedSeal’s Cloud Security Solution -Ensure Your Critical Cloud Resources Aren’t Exposed to the Internet

[1] AWS uses the term VPC (Virtual Private Cloud) and Azure uses the term VNet (Virtual Network). Conceptually, they provide the bedrock for provisioning resources and services in the cloud. However, there is variability in implementation.

AI, cyber terrain analytics improve hybrid multicloud security

VenturebBeat | May 21, 2021

Typical hybrid cloud IT integration strategies have fundamental design flaws that CIOs and CISOs need to address if they’re going to avert another attack on the scale of SolarWinds.

…any network mapping platform needs to excel at visualization and provide insightful analysis at a graphical level to identify potential security anomalies and actual breach activity. Useful in understanding this is the following example of how RedSeal’s cyber risk modeling software for hybrid cloud environments works.